PubblicazioniPublications    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Home_enPublications
IGM PUBLICATIONS

Ribonucleotide incorporation by human DNA polymerase eta impacts translesion synthesis and RNase H2 activity.

Authors

Mentegari E, Crespan E, Bavagnoli L, Kissova M, Bertoletti F, Sabbioneda S, Imhof R, Sturla SJ, Nilforoushan A, Hubscher U, van Loon B, Maga G.

Journal

Nucleic Acids Research 45(5) 2600-2614, 2017

CNR authors

CRESPAN, MAGA, SABBIONEDA

Modules

Abstract

Ribonucleotides (rNs) incorporated in the genome by DNA polymerases (Pols) are removed by RNase H2. Cytidine and guanosine preferentially accumulate over the other rNs. Here we show that human Pol _ can incorporate cytidine monophosphate (rCMP) opposite guanine, 8-oxo-7,8-dihydroguanine, 8-methyl-2'-deoxyguanosine and a cisplatin intrastrand guanine crosslink (cis-PtGG), while it cannot bypass a 3-methylcytidine or an abasic site with rNs as substrates. Pol eta is also capable of synthesizing polyribonucleotide chains, and its activity is enhanced by its auxiliary factor DNA Pol delta interacting protein 2 (PolDIP2). Human RNase H2 removes cytidine and guanosine less efficiently than the other rNs and incorporation of rCMP opposite DNA lesions further reduces the efficiency of RNase H2. Experiments with XP-V cell extracts indicate Pol eta as the major basis of rCMP incorporation opposite cis-PtGG. These results suggest that translesion synthesis by Pol eta can contribute to the accumulation of rCMP in the genome, particularly opposite modified guanines.

Link to article

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw1275

Keywords

Note

doi.org/10.1093/nar/gkw1275

Back


Copyright © 2014 Home_en